
The Design of an XMPP-based Service Integration Scheme

Feng-Cheng Chang and Duen-Kai Chen
Department of Innovative Information and Technology, Tamkang University, TAIWAN

Email: {135170, 134330}@mail.tku.edu.tw

Abstract—The advances in network-enabled software devel-
opment raises the demands on the service oriented architecture
(SOA). Popular implementations of SOA uses XML-based
representations, such as SOAP and WSDL, to enable remote
function invocation and service discovery. Our previous expe-
riences show that a sophisticated XML representation is often
over-complex for a controlled environment. We also found that
the application composition is a high-level operation. Therefore,
a proper infrastructure for hosting and delivering various
kinds of services is required. We then proposed an XMPP-
based solution to overcome these issues. A service is an XMPP
client, and focus on how to interact with the other clients; the
management of the service can be flexibly arranged through the
proposed format of its full JID; and the fundamental security
are handled by the XMPP server and the publisher-subscriber
pattern.

Keywords-extensible messaging and presence protocol;
XMPP; service-oriented architecture; SOA

I. INTRODUCTION

The advances in network-enabled software development
raises the demands on the service oriented architecture
(SOA). In essence, a service is a software component
that provides a specific functionality to a range of ser-
vice users. A common principles of service design is to
be self-contained and independent of specific applications.
Therefore, we can combine different services to form our
application flexibly. I. Sommerville defines SOA in [1]
as ”Service-oriented architectures (SOAs) are a way of
developing distributed systems where the system components
are stand-alone services, executing on geographically dis-
tributed computers.” The additional “distributed” property
implies the using of standardized protocols. A common
implementation approach of SOAs is to adopt standard
XML-based protocols, such as SOAP and WSDL, to support
platform and language-independent information exchange.
Because an application is constructed by composing the
required services, there are two major tasks to be accom-
plished before the application is made available. One is to
discover the necessary services locally and externally, and
the other is to establish the connections among the services.
Because services are published with well-defined APIs and
the interactions of an application is implicitly specified in the
main algorithm, the latter (communication among services)
is not difficult to achieve. On the contrary, the run-time
discovery of a service poses several issues. Although there
are many standards for service description, it still depends

Figure 1. An XMPP network

on the underlying protocols and architectures to obtain the
descriptions. In this paper, we will design a scheme of
hosting services on an XMPP network, which meets the
requirements of simple application composition.

This paper is organized as follows. In Sec. II, we briefly
overview our previous works that address the high-level
service integration of a future classroom. In Sec. III, we
describe the service discovery issues in a controlled environ-
ment. In Sec. IV, we design the detailed scheme to achieve
the requirements. Then we conclude our work in Sec. V.

II. OUR PREVIOUS WORK

We will briefly describe our previous work in this section.
The first is the study of the Extensible Messaging and
Presence Protocol (XMPP) and its usages. The second is
a service-based scheme for integrating several hardware
devices to form an effective whiteboard system.

A. XMPP

The extensible messaging and presence protocol
(XMPP) [2][3] is a technology specified by the IETF for
real-time communication. It is based on the XML format
for exchanging information. More specifically, it provides
a stream-like method to send small pieces of XML from
one entity to another [4]. In our previous study [5], we
proposed that XMPP would be adopted as the high-level
communication protocol of a software service.

As shown in Fig. 1, a typical XMPP network is organized
as a federation. Each client is identified in a format like E-
Mail addresses. A server is responsible for authenticating its
clients. Once a client is authenticated, it is ready to obtain the
presence of its buddies and exchange messages with them.

2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing

978-0-7695-4517-2/11 $26.00 © 2011 IEEE

DOI 10.1109/IIHMSP.2011.45

33

The presence information and the message delivery rely on
the server-to-server communications. Presence and instant
messaging are the two fundamental functions that XMPP is
designed to achieve. In XMPP, two mutually authenticated
users automatically subscribe to each other’s presence. Each
user can update his own presence status, and the servers
implicitly handle the propagation of the change. According
to the publisher-subscriber pattern, all the subscribers will
be notified with this change. There are two approaches for
exchanging data between two users. A normal message is
a one-way data submission from one user to the other.
If bi-directional data exchange is required, an initial chat
message would create a session for further related messages.
A multi-party communication can be established based on
the groupchat message (or the more modern multi-user chat
(MUC) extension) and the corresponding server components.

In addition to text messages, XMPP support binary data
transfer through extensions. We may use bits of binary
(BOB) or in-band bytestream (IBB) to transfer small amount
of binary data. For bulk data, it is better to use one of the
out-of-band protocol extensions, such as Jingle, to efficiently
encode and transfer the stream.

In the study of [5], we found that XMPP is suitable for in-
tegrating high-level services, especially when the application
requires ad-hoc services. In such a dynamic environment, a
service should be allowed to publish its availability to the
users, and the composition of an application should mostly
rely on run-time discovery.

Based on the above concepts, we developed two pro-
totypes. In each prototype, we implemented a finite-state
service for reserving and scheduling a resource. We learned
a few points from the implementation experiences:

∙ Although there is a service discovery extension of
XMPP, it is not very useful when we implement a ser-
vice as an XMPP client instead of a server component.
We can directly identify the necessary service by its
Jabber ID (JID).

∙ Although a sophisticated service definition language is
applicable to a wide variety of service descriptions, a
simple string is enough for identifying the capability of
a service in a controlled environment. The reason is that
we have some a priori knowledge about the application
and the services.

B. Digital Whiteboard

The design described in this paper is directly motivated by
the construction of the interactive whiteboard application [6].
A whiteboard (or blackboard) is an important tool for a
teacher to broadcast the teaching materials to the students
in the classroom. It enforces the students to pay attention
to the location of the teacher, and the teacher can see
the reaction of the students. Due to the implicit two-way
communications, it is not appropriate to replace a whiteboard
with personal displays.

Figure 2. The scenario of the interactive whiteboard

The idea of “a future classroom” [7] has attracted wide
attention from academia and practitioner. Based on the
advances in various computer technology, it usually refers
to a classroom equipped with computers, projectors and
wire/wireless broadband connections, aiming at providing
computer generated presentations and Internet content. A
future classroom thus provides enhanced experiences of re-
ceiving spoken, graphical, audio and video content. Because
a whiteboard is an indispensable component in a classroom,
an enhanced version is usually defined as a large-sized
multimedia touchscreen in a future classroom. It is capable
of displaying multimedia content and receiving interactive
events from the students.

To implement an interactive whiteboard (IWB), the ex-
pensive approach is based on a large-sized touchscreen. In
[6], we proposed an alternative approach. It is based on
the commonly available devices in a multimedia classroom,
such as the controlling computer, the projector, and the
wireless network. With an additional tablet computer, we
can construct an effective IWB. The integration scheme is
shown in Fig. 2. In this scheme, we wrote an XMPP client
as the wrapper of the projector service. The teacher’s tablet
is the actual device for display and interaction. The open-
source VNC solution is used to synchronously export the
tablet display to the projector system. The role of XMPP in
the scheme is to carry the control parameters sent from the
tablet to the projector wrapper. The wrapper then invokes
the VNC client to establish the connection.

By constructing this IWB application, we learned that:

∙ It is not difficult to provide an XMPP service for
representing a hardware device.

∙ The controlling commands can be easily delivered as
XMPP messages.

∙ More devices can be integrated to enable advanced
classroom applications. For example, audio/video
recorders can be incorporated to provide real-time
multicasting service or video-on-demand service.

∙ The actual data exchange among devices does not
necessarily implemented using XMPP.

∙ We need a platform for hosting services (at least the
controlling parts), so that we can lookup the necessary

34

devices and integrate them to form the application.

III. REQUIREMENTS

Service-oriented architectures has been popular for a few
years. Some of the related research topics and standards are
also developed. One of the specifications for describing a
service is the Web Service Definition Language (WSDL).
However, our experiences show that WSDL may be overkill
for a simple application, especially when being in a well-
organized and controlled environment. Therefore, a string
is enough for describing a service in a simplified case.
For example, we can define a structural string to describe
a service in a classroom: classroom ID, service location,
service type, service enumerator.

In addition to the service description, we need a ne-
gotiation method for discovering a service. Some of the
approaches are list below:

∙ Broadcast a discovery message in the local network,
and obtain the response messages from the services.

∙ Send a discovery request to the registry service, and
obtain a list of registered services.

∙ Delegate the discovery to an agent. The agent will
resolve the criteria and find the matched services.

No matter which approach we choose, the conceptual ne-
gotiation steps are: obtaining the list of services, matching
the criteria for the services, and reporting the candidates
for application construction. When both local and remote
services are considered, the first step becomes complicated.
Sometimes, it is also difficult to discover local services in a
complex network configuration.

Similar to public network servers, services should be
protected by a certain access control mechanism. Other-
wise, malicious users can utilize the services for their
own purposes. Depending on the organization-wide policies,
different security mechanisms would be enforced. We leave
this as an implementation issue and only design a platform
that can be adapted to work with different mechanisms.

While we protect a service from misuse, we also would
like to keep the flexibility to publish it to the potential users.
One of the obstacles is firewalls. A firewall is commonly
used for protecting enterprise intra-net from the outside
attacks. However, it also restricts the communication to a
service hosted in the intra-net.

IV. THE ARCHITECTURE

According to the aforementioned discussions, we would
like to focus on the design of an XMPP-based service
integration scheme. Due to the variety of services, we
mainly use the XMPP mechanism as the hosting platform
for services. That is, the design will cover the functionality
of publishing and locating a service.

A. The Format of Service Identifier

In a controlled environment, we assume that the lo-
cation of a service is known and the capability can be
expressed as a simple string. The full Jabber ID format is
account@server/resource. To identify a service, we
use the following structure:

∙ The service controller (the owner or the administra-
tor) is represented by the bare Jabber ID part. The
account@server is similar to an E-Mail address,
and it is natural for representing an entity that manages
a collection of services.

∙ The location, capability, and the enumerator is repre-
sented by the resource part. An XMPP server allows
multiple logins of a user as long as the resource
strings are different for different logins. We combine
the following string fractions with the given delimiter
(say, the underscore character) to form the resource
string:

– The location string: A camel-case word to repre-
sent the location.

– The capability string: A camel-case word to rep-
resent the supported functions.

– The enumerator string: A natural number to dis-
tinguish different instances of the same capability.

Sometimes the service controller is correlated to the loca-
tion or the functionality. How to choose a proper granu-
larity of the service controller is an administrative issue.
There is no universal policy to make the “right” deci-
sion. For example, we have only 10 classrooms and there
are no more than three service devices. In this case, a
single service controller is enough for managing all the
devices. Therefore, we may have a projector identified as
srvcs@ly.tku.edu.tw/CL323_LcdProjector_1.

B. The Presence Priority

According to the XMPP specifications, an XMPP client
can optionally specify a priority number (−127 to +128)
when logging into the server. A higher priority means that
the resource is more likely to receive a message sent to the
bare JID. A negative priority indicate that the resource never
receives a message to the bare JID.

In our scheme, this property makes it easy to specify the
default service under a service controller. The default service
may be the most commonly used service in the location, or
a service that requires human interactions. Alternatively, we
can implement a service gateway as the default service. It
receives the service discovery requests and responds with
sophisticated discovery results, e.g., in WSDL. The advan-
tage is that we can use the single-string based identification
for convenience while keeping the interoperability with other
systems via the service gateway.

35

C. The Security Concerns

As mentioned in Sec. III, we do not specify the detailed
security mechanism in the integration scheme. Basically
most of the cryptographic algorithms and data exchanging
scenario can be implemented to use XMPP with in-band/out-
of-band data transmission channels. In this section, we
discuss the fundamental protection provided by the XMPP.

1) XMPP-Level: XMPP supports negotiating the stream
options. In most of the implementations, the <starttls>
element enables the Transport Layer Security (TLS) [8] en-
cryption of the stream. With this transport-layer encryption,
an XMPP application transparently sends and receives data
without explicit cryptographic functions calls. Of course,
you may disable this feature to achieve better communi-
cation efficiency when working in a trusted network. We
may also use the <mechanism> element to specify the
authentication method. One of the popular mechanisms is
the Simple Authentication and Security Layer (SASL) [9]. It
supports various authentication methods: PLAIN, DIGEST-
MD5, SCRAM, EXTERNAL, GSSAPI, ANONYMOUS,
etc.

2) Service-Level: When composing XMPP-based ser-
vices in our scheme, the publisher-subscriber pattern en-
forced by the XMPP server provides the fundamental
service-level security. A service publishes itself on a server
after the authentication. It may control whether to serve
a specific user or not by accept or decline the subscrip-
tion request. A service user may discover services after
authentication. Once it discovers a new service, it sends
a subscription request to the service and waits for the
authorization. The design pattern provides not only the
efficiency of event communication, but also the extensible
service access scenario. A service actively controls to whom
it provides the functions; and an application actively controls
whose function is included in the composition.

V. CONCLUSION

In this paper, we reviewed our previous work and found a
few application design issues based on SOA. The first point
is that it is not necessary to use a sophisticated definition
language to describe a service in a controlled environment.
The second point is that the application composition is a
very high-level operation. We need a platform for hosting
services and exchanging various kind of data. The third point
is that the platform should be extensible to meet security
mechanisms and application protocols.

We then proposed that XMPP network could be adopted
as the infrastructure of our platform. The XMPP provides
the stream encryption and the default authentication mecha-
nism as the fundamental protection. The publisher-subscriber
pattern provides the basic service-level authorization. To
implement a service, we write an XMPP client which
calls the corresponding local function to process the input
messages and send the results as the output messages. To

lookup a service, we can use the full JID to locate the desired
service. The JID can be broken into several components:
the bare JID part represents the service controller and the
hosting server; the resource part represents the location of
the service, the capability of the service, and the enumeration
number. Alternatively, we may construct a service gateway
to responds to the external requests (e.g., WSDL). The ser-
vice gateway is logged in as the highest non-negative priority
client. Requests sent to the bare JID will be redirected to
the service gateway implicitly, and this increases the level
of interoperability to external systems.

ACKNOWLEDGMENT

This work was partially supported by the NSC, Taiwan,
under Grants NSC 99-2221-E-032-050. We also appreciate
the efforts of the following students in their XMPP-based
senior projects: Wen-Hsin Chiang, Shih-Han Lin, Shan-Shan
Hsu, Szu-Wen Tsao, Yi-Cheng Tsai, Feng-Yi Hsiao, Ching-
Hua Li, Hsiang-Chi Tsai, and Chin-Yuan Chang.

REFERENCES

[1] I. Sommerville, Software Engineering, september ed.
Addison-Wesley, 2011.

[2] P. Saint-Andre, “Extensible messaging and presence protocol
(XMPP): Core,” Internet Engineering Task Force (IETF), Re-
quest for Comments 6120, March 2011.

[3] ——, “Extensible messaging and presence protocol (XMPP):
Instant messaging and presence,” Internet Engineering Task
Force (IETF), Request for Comments 6121, March 2011.

[4] P. Saint-Andre, K. Smith, and R. Tronçon, XMPP: The Defini-
tive Guide. O’Reilly, April 2009.

[5] F.-C. Chang, “A scheme for network service integration by
XMPP,” in 2010 E-Tourism, Yilan, Taiwan, June 2010, pp.
55–64.

[6] F.-C. Chang and D.-K. Chen, “An open-source enabled scheme
for improved interactive whiteboard,” in The 4th International
Conference on Ubi-media Computing (ADET Workshop), Sao
Paulo, Brazil, July 2011, accepted.

[7] L. R. Winer and J. Cooperstock, “The ”intelligent classroom”:
changing teaching and learning with an evolving technological
environment,” Computers & Education, vol. 38, no. 1-3, pp.
253–266, January-April 2002.

[8] T. Dierks and E. Rescorla, “The transport layer security (TLS)
protocol version 1.2,” Internet Engineering Task Force (IETF),
Request for Comments 5246, August 2008.

[9] A. Melnikov and K. Zeilenga, “Simple authentication and se-
curity layer (SASL),” Internet Engineering Task Force (IETF),
Request for Comments 4422, June 2006.

36

